

Single Mask 3-Phase Electrostatic Rotary Stepper Micromotor

Edin SARAJLIC,

Christophe YAMAHATA, Mauricio CORDERO, Laurent JALABERT, Tetsuhiko IIZUKA & Hiroyuki FUJITA

The University of Tokyo Institute of Industrial Science

Single Mask 3-Phase Electrostatic Rotary Stepper Micromotor

Edin SARAJLIC¹, Christophe YAMAHATA², Mauricio CORDERO³, Laurent JALABERT⁴, Tetsuhiko IIZUKA³ & Hiroyuki FUJITA³

¹ SmartTip B.V., Enschede, THE NETHERLANDS

² Institute of Microengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, SWITZERLAND ³ CIRMM, Institute of Industrial Science, the University of Tokyo, Tokyo, JAPAN

⁴LIMMS/CNRS-IIS (UMI 2820), the University of Tokyo, Tokyo, JAPAN

Background

→ Skew angle compensation in HDD

Micromotor design

- 3-phase stepper motor with a flexural pivot bearing
- Previous motor (presented at MEMS 2009)
- New design

Modeling and characterization

- Modeling
- **FFT** measurement method
- Experimental characterization

Conclusion

Background

Skew angle compensation in Hard Disk Drives

Background I Skew angle compensation in HDD

Micromotor design

- 3-phase stepper motor with a flexural pivot bearing
- Previous results (presented at MEMS 2009)
- New design

Working principle I3-phase rotary stepper micromotor

Variable capacitance micromotor with flexural pivot bearing

Flexural pivot bearing

- + No friction / No wear
- + Rotor electrically grounded
- + Flexures as mechanical support for the wiring
- + Initial position of the rotor
- limited rotational range

Tuesday, June 23, 2009

Previous results | Presented at MEMS 2009

Electrostatic Rotary Stepper Micromotor for Skew Angle Compensation in Hard Disk Drive

E. Sarajlic, C. Yamahata, M. Cordero & H. Fujita *Proc. 22nd IEEE Int. Conf. on MEMS*, January 2009, pp. 1079-1082.

5-masks fabrication process

Stator poles are connected in an alternating sequence with 3 distinct electrical phases.

Previous results | Presented at MEMS 2009

Electrostatic Rotary Stepper Micromotor for Skew Angle Compensation in Hard Disk Drive

E. Sarajlic, C. Yamahata, M. Cordero & H. Fujita *Proc. 22nd IEEE Int. Conf. on MEMS*, January 2009, pp. 1079-1082.

Previous results | Presented at MEMS 2009

Electrostatic Rotary Stepper Micromotor for Skew Angle Compensation in Hard Disk Drive

E. Sarajlic, C. Yamahata, M. Cordero & H. Fujita

Proc. 22nd *IEEE Int. Conf. on MEMS*, January 2009, pp. 1079-1082.

•

New design | Single mask 3-phase stepper motor

Previous design (MEMS '09)

Each stator electrode is electrically insulated from its neighbors.

Conductive interconnects were employed to connect the electrodes to a given electrical phase.

Current design

Stator electrodes are arranged into six groups.

Each group is connected to the driving electronics.

New design | Single mask 3-phase stepper motor

Previous design (MEMS '09)

Current design

- + Simpler fabrication
- + Larger number of poles
- Reduced efficiency
- Contact pads inside

Modeling and Characterization

- Modeling
- FFT measurement method
- Experimental characterization

Modeling | Flexural pivot stiffness / Electrostatic torque

$$M = F \cdot r = n \frac{1}{2} \frac{\epsilon_o h U^2}{g} r$$

Modeling | Performance characteristics (theoretical model)

Parameter	Symbol	Value
Motor radius	r	575 µm
Electrode width	W	4 µm
Electrode height	h_p	25 µm
Gap (rotor/stator)	g	1.5 μm
No. stator electrodes per phase	п	132
Pitch of rotor poles		0.9°
Flexure length	1	390 µm
Flexure width	b	3 µm
Flexure height	h	25 µm
Distance to virtual pivot center	р	80 µm

Rotational range of the single-mask 3-phase rotary stepper motor.

The results are for one direction only. (The angular range is double.)

Experimental results | Operation of the stepper motor

Video recording of the single mask stepper motor

Video frames are extracted for FFT calculations in MATLAB.

Measurement method | Fourier transform image analysis

Displacement measurement by Fourier transform analysis

The Fourier transform can be applied to images (2D function).

Example: Fast Fourier Transforms of images

Measurement method | Fourier transform image analysis

Displacement measurement by Fourier transform analysis

The Fourier transform can be applied to **images** (2D function).

Example: Fast Fourier Transforms of images

Measurement method | Fourier transform image analysis

Displacement measurement by Fourier transform analysis

Experimental results | Stepwise actuation

Half stepping actuation of the micromotor

↑ Half stepping actuation sequence.

Rotational displacement measured with an image processing technique based on FFT.

Experimental results | Rotational range

▲ Maximum rotational range of the single-mask 3-phase rotary stepper motor as a function of the driving voltage.

The measurements are for one direction only. The angular range is double.

We have observed stiction of the rotor. Probably due to charge build-up in a low-conductivity device layer.

Edin Sarajlic (e.sarajlic@smarttip.nl)

Conclusion

- We have devised, fabricated and tested a 3-phase rotary stepper micromotor using a single mask fabrication process based on SOI micromachining;
- Performance characteristics of the motor were limited due to stiction of the rotor caused by charge build-up (low conductivity device layer);
- Significant improvement in performance and reliability of the motor expected when fabricated on a highly conductive SOI wafer.

