Electromagnetically Actuated Ball Valve Micropumps

presented by

Christophe Yamahata

and

F. Lacharme, J. Matter, S. Schnydrig, Y. Burri, M. A. M. Gijs

Ecole Polytechnique Fédérale de Lausanne
Institute of Microelectronics and Microsystems

Transducers '05 • June 6, 2005
Outline

1. Lab-On-a-Chip
2. State-of-the-art

Working principle

1. External electromagnet
2. Multi-layered microchip
Microfabrication
- Magnetic membrane
- PMMA microchip
- Glass microchip

Results & discussion
- Magnetic membrane actuation
- Micropumps characterization
- Damped oscillator model

Conclusion
Outline

1. Lab-On-a-Chip
2. State-of-the-art

Working principle

- External electromagnet
- Multi-layered microchip
Lab-On-a-Chip:

- Microfluidic Laboratory on a chip
- Plastic / glass material

Need for **low-cost** micropumps targeted to biochemical applications:

- **disposable** or **sterilizable**
- with possible **integration** in Lab-On-a-Chip devices
Main aspects to take into consideration in the conception of a micropump:
State-of-the-art (rapid overview)

Microvalves

Injection moulded ball valve fabricated with LIGA technology
IMM Main (Internet website, 1996)

Electromagnetic active ball valve
O. Krusemark
Electromagnetic actuation:

- simplicity
- force magnitude
- deflection amplitude

× miniaturization but ✓ external actuation
Outline

1. Lab-On-a-Chip
2. State-of-the-art

Working principle

2. External electromagnet
 Multi-layered microchip

Microfabrication

3. Magnetic membrane
 PMMA microchip
 Glass microchip
Working principle ▶ External electromagnet

Pumping principle:

- Reciprocating **diaphragm** ("positive displacement" pump)
- Use of passive **ball valves**
- **External** electromagnetic actuation

4800 turns coil
(Atam windings s.r.l.)
Working principle → Multi-layered microchip

Fabrication method based on **powder blasting** erosion process.

Plastic device (polymethylmethacrylate)

Glass device (borosilicate)
Working principle
- External electromagnet
- Multi-layered microchip

Microfabrication
- Magnetic membrane
- PMMA microchip
- Glass microchip

Results & discussion
- Magnetic membrane actuation
- Micropumps characterization
- Damped oscillator model
Integration of a \textit{magnetic material} into the \textit{flexible diaphragm} of the reciprocating micropump.

\textbf{PDMS with NdFeB powder}
(MQP-S-11-9 powder, Magnequench)

\textbf{PDMS + NdFeB commercial magnet}
Fabrication of the **composite magnet**:

PDMS matrix + NdFeB powder (typical size ~50 µm)
→ Optimal powder ratio: ~ 50% vol. powder

MQP-S-11-9 powder datasheet:
- **median size**: 35 - 55 µm
- **distribution width**: 10 - 30 µm
- **apparent density**: 3.6 - 4.2 g/cm³
- **theoretical density**: 7.43 g/cm³
Microfabrication - Powder blasting

Microstructuration of microfluidic chips by powder blasting

- nozzle
- pressurized abrasive powder (1-5 bar)
- distance to the substrate
- Al₂O₃ powder (average size 30 µm)
- mask layer
- sample X-Y translation
- substrate
Microfabrication ▶ Powder blasting

Microstructuration of microfluidic chips by **powder blasting**

Apparent roughness: ~1 µm
Small relative roughness → *hydraulically smooth* microchannels

SEM photograph of a PMMA microchannel fabricated by powder blasting

100µm wide channel
30 µm Al₂O₃ particles

Photograph of a glass microchannel fabricated by powder blasting

1 mm scale bar
Microfabrication ▶ PMMA microchip

Fabrication process of the PMMA microchip

- Metallic mask cut by Nd:YAG laser
- Structured PMMA sheet
- Channel width: 500 µm *
- Thickness: 250 µm
 - Typical: 100 µm → 500 µm
- Powder blasting (Al₂O₃ particles)
- CAD files
- triethylene glycol dimethacrylate bonding solution applied on each layer
- 5 min @ 70 °C
- Final Microfluidic chip
- 36mm x 22mm x 5mm (without connectors)
Microfabrication ➤ Glass microchip

Fabrication process of the **glass** microchip

- **Powder blasting** of mask protected **borosilicate** glass (borofloat 33, *Schott*)
- Cleaning (isopropanol + piranha solution)
- Glass **fusion bonding** at 600 °C

- Membrane assembly: **PDMS/glass** bonding (plasma treatment)
- Connectors gluing: epoxy (Epo-tek)
Microfabrication ➤ Glass microchip

Powder blasting of holes in glass material

1. without 2nd impact effect
2. 2nd impact effect

- Evolution of the erosion profile of a 1 mm thick borosilicate hole
- Time evolution of the erosion depth (after P.J. Slikkerveer et al.)

- appropriate shape for a ball valve seat
Microfabrication ▶ Glass microchip

Glass prototype of the electromagnetically actuated ball valve micropump

ext. dim. 36 mm × 22 mm

Photograph of the integrated ball valve fabricated in glass

steel ball: Ø 0.7 mm
Microfabrication
- Magnetic membrane
- PMMA microchip
- Glass microchip

Results & discussion
- Magnetic membrane actuation
- Micropumps characterization
- Damped oscillator model

Conclusion
Characterization of the magnetic actuator

→ Force as a function of the air gap, for different currents (DC) in the coil.

Force max.: ~ 0.5 N
(100 mA DC current)
Results & discussion ▶ Magnetic membrane actuation

Measurement of the membrane stiffness

Measured stiffness: $K \sim 700 \text{ N/m}$
Characterization of the ball valve (glass device)

Efficiency of the valve:

\[\varepsilon = \frac{Q_+(P)}{Q_-(P)} \approx \frac{20 \text{ mL/min}}{0.25 \text{ mL/min}} = 80 \]

Ball valve integrated in a glass microchip

steel ball : Ø 0.7 mm

Electromagnetically Actuated Ball Valve Micropumps

Christophe.Yamahata@a3.epfl.ch
Results & discussion

Ball valve micropumps

Characterization of the ball valve micropumps
(glass + PMMA device)

Flow rate – back-pressure characteristic of the ball valve micropump in glass

Electromagnetically Actuated Ball Valve Micropumps

Christophe.Yamahata@a3.epfl.ch
Results & discussion

Damped oscillator model

Equivalence with electrical circuit (RLC electrical model)

Resistance: \[R = \frac{128 \mu l}{\pi D_H^4} \]

Inductance: \[L = \frac{\rho l}{S} \]

Capacitance: \[C = \frac{AV}{\Delta p} \]

Liquid flow in microchannels

Membrane
Results & discussion ▶ Damped oscillator model

Equivalence with electrical circuit (RLC electrical model)

Reciprocating pump with ideal valves:

\[f_0 = \frac{1}{2\pi} \sqrt{\frac{K}{\left(\frac{A}{a}\right)^2 m}} \]

Equivalent electrical model of the reciprocating pump

\[f_0 = \frac{1}{2\pi} \sqrt{\frac{1}{LC}} \]
Results & discussion

Damped oscillator model

Equivalence with electrical circuit (RLC electrical model)

→ Good estimation of the resonance frequency with this hydrodynamic model of the ball valve reciprocating micropump.

Flow rate – frequency characteristics of the ball valve micropumps

![Graph showing flow rate vs. frequency for different micropumps](image)

100 mA sinusoidal actuation:
- Glass ball valve micropump
- PMMA ball valve micropump
Results & discussion
- Magnetic membrane actuation
- Micropumps characterization
- Damped oscillator model

Conclusion
Conclusion

Summary of the performances of the different prototypes:

<table>
<thead>
<tr>
<th>Pump type (ball valve micropump)</th>
<th>Maximum back-pressure</th>
<th>Maximum water flow rate</th>
<th>Typical operating frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMMA</td>
<td>225 mbar</td>
<td>~ 5 mL/min</td>
<td>f₀ ~ 30 – 40 Hz</td>
</tr>
<tr>
<td>Glass</td>
<td>280 mbar</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Main results:

• Flexible membrane → high compression ratio (bubble tolerance & self-priming)
• ball valve → high efficiency (limited reverse flow)
• External electromagnetic actuation → high forces achievable
Thank you!