

Electromagnetically

Actuated Ball Valve

Micropumps

presented by

Christophe Yamahata

and

F. Lacharme, J. Matter, S. Schnydrig, Y. Burri, M. A. M. Gijs

Ecole Polytechnique Fédérale de Lausanne Institute of Microelectronics and Microsystems

Transducers '05 • June 6, 2005

Outline

- Lab-On-a-Chip
- State-of-the-art

Working principle

- External electromagnet
- Multi-layered microchip

February 22, 2005

Microfabrication

- Magnetic membrane
- PMMA microchip
- Glass microchip

Results & discussion

- Magnetic membrane actuation
- Micropumps characterization
- Damped oscillator model

Conclusion

Outline

Lab-On-a-ChipState-of-the-art

Working principle

- External electromagnet
- Multi-layered microchip

Lab-On-a-Chip:

- Microfluidic Laboratory on a chip
- Plastic / glass material

Need for **low-cost** micropumps targeted to biochemical applications:

- disposable or sterilizable
- with possible integration in Lab-On-a-Chip devices

Outline Lab-On-a-Chip

Main aspects to take into consideration in the conception of a micropump:

Electromagnetically Actuated Ball Valve Micropumps

Outline > State-of-the-art (rapid overview)

Microvalves

Injection moulded ball valve fabricated with LIGA technology IMM Main (Internet website, 1996)

Electromagnetic active ball valve O. Krusemark

Electromagnetically Actuated Ball Valve Micropumps

Outline > State-of-the-art (rapid overview)

Microactuators

Electromagnetically Actuated Ball Valve Micropumps

Outline

Lab-On-a-ChipState-of-the-art

Working principle

- External electromagnet
- Multi-layered microchip

Microfabrication

- Magnetic membrane
- PMMA microchip
- Glass microchip

Pumping principle:

- Reciprocating diaphragm ("positive displacement" pump)
- Use of passive ball valves
- External electromagnetic actuation

4800 turns coil (Atam windings s.r.l.)

Electromagnetically Actuated Ball Valve Micropumps

Working principle Multi-layered microchip

Fabrication method based on **powder blasting** erosion process.

Plastic device (polymethylmethacrylate)

Christophe.Yamahata@a3.epfl.ch

SEOUI

Working principle

- External electromagnet
- Multi-layered microchip

Microfabrication

- Magnetic membrane
- PMMA microchip
- Glass microchip

Results & discussion

- Magnetic membrane actuation
- Micropumps characterization
- Damped oscillator model

Microfabrication > Magnetic membrane

Integration of a **magnetic material** into the **flexible diaphragm** of the reciprocating micropump

PDMS with NdFeB powder (MQP-S-11-9 powder, Magnequench)

PDMS + NdFeB commercial magnet

Fabrication of the **composite magnet**:

PDMS matrix + NdFeB powder (typical size ~50 μ m) \rightarrow Optimal powder ratio: ~ 50% vol. powder

MQP-S-11-9 powder datasheet:

median size: 35 - 55 μm distribution width: 10 - 30 μm apparent density: 3.6 - 4.2 g/cm³ theoretical density: 7.43 g/cm³

8 Microfabrication > Powder blasting

Microstructuration of microfluidic chips by powder blasting

Electromagnetically Actuated Ball Valve Micropumps

Microstructuration of microfluidic chips by powder blasting

Apparent roughness: ~1 μ m Small relative roughness \rightarrow hydraulically smooth microchannels

SEM Photograph of a Phytheter microchannel fabricated by powder blasting 100mm wide channel 30 µm Al₂O₃ particles

Microfabrication > PMMA microchip

Fabrication process of the PMMA microchip

triethylene glycol dimethacrylate

bonding solution applied on each layer

Final

Microfluidic chip

36mm x 22mm x 5mm (without connectors)

Electromagnetically Actuated Ball Valve Micropumps

8 Microfabrication > Glass microchip

Fabrication process of the glass microchip

- **Powder blasting** of mask protected **borosilicate** glass (borofloat 33, *Schott*)
- Cleaning (isopropanol + piranha solution)
- Glass fusion bonding at 600 °C

- Membrane assembly: PDMS/glass bonding (plasma treatment)
- Connectors gluing: epoxy (Epo-tek)

8 Microfabrication > Glass microchip

Powder blasting of holes in glass material

Microfabrication > Glass microchip

Glass prototype of the electromagnetically actuated ball valve micropump **ext. dim. 36 mm × 22 mm**

Photograph of the integrated ball valve fabricated in glass steel ball: Ø 0.7 mm

Electromagnetically Actuated Ball Valve Micropumps

Microfabrication

- Magnetic membrane
- PMMA microchip
- Glass microchip

Results & discussion

- Magnetic membrane actuation
- Micropumps characterization
- Damped oscillator model

Conclusion

Results & discussion > Magnetic membrane actuation

Characterization of the magnetic actuator

 \rightarrow Force as a function of the air gap, for different currents (DC) in the coil.

Force max.: ~ 0.5 N (100 mA DC current)

Results & discussion > Magnetic membrane actuation

Measurement of the membrane stiffness

Measured stiffness: K ~ 700 N/m

Electromagnetically Actuated Ball Valve Micropumps

Results & discussion > Ball valve micropumps

Characterization of the ball valve (glass device)

Efficiency of the value: $\varepsilon = \frac{Q_+(P)}{Q_-(-P)} \approx \frac{20 \text{ mL/min}}{0.25 \text{ mL/min}} = 80$

Results & discussion > Ball valve micropumps

Characterization of the ball valve micropumps (glass + PMMA device)

Electromagnetically Actuated Ball Valve Micropumps

Results & discussion > Damped oscillator model

Equivalence with electrical circuit (RLC electrical model)

Resistance
$$R = \frac{128 \mu l}{\pi D_H^4}$$
Liquid flow in
microchannelsInductance $L = \frac{\rho l}{S}$ \checkmark Capacitance $C = \frac{\Delta V}{S}$ \checkmark

 Δp

Electromagnetically Actuated Ball Valve Micropumps

Results & discussion > Damped oscillator model

Equivalence with electrical circuit (RLC electrical model)

Electromagnetically Actuated Ball Valve Micropumps

Christophe.Yamahata@a3.epfl.ch

SEOUI

Results & discussion > Damped oscillator model

Equivalence with electrical circuit (RLC electrical model)

 \rightarrow Good estimation of the resonance frequency with this hydrodynamic model of the ball valve reciprocating micropump.

Results & discussion

Magnetic membrane actuation
Micropumps characterization
Damped oscillator model

Conclusion

Summary of the performances of the different prototypes:

Pump type (ball valve micropump)	Maximum back-pressure	Maximum water flow rate	Typical operating frequency
PMMA	225 mbar	~ 5 mL/min	f _o ~ 30 – 40 Hz
Glass	280 mbar		

Main results:

- Flexible membrane → high compression ratio (bubble tolerance & self-priming)
- ball value \rightarrow high efficiency (limited reverse flow)
- External electromagnetic actuation \rightarrow high forces achievable

Thank you!

Electromagnetically Actuated Ball Valve Micropumps